

	
			
				hackup.net

				Bigby's Web Log

			

						
									
							
			
								
		Search
		
		
	

			
			
				Main menu

								Skip to primary content

													Home
	About
	Datenschutzerklärung – Privacy Policy
	Imprint

			
	

	

		
			

				
					
						Post navigation

						← Previous
						Next →
					

					

	
		Wifi Enabled RGB Matrix Wall Light, Part 1

				
			Posted on December 17, 2011 by cg		

			

	
			
				
			
		
			

		
Inspired by the so called Lampduino and several other related projects I decided to build my own version of a RGB matrix wall light some time ago. During the last few weeks I finally managed to start out on this project.

Hardware

The matrix of 64 individual cells and the LED back-plane are made from 4mm thin plywood that I spray-painted with a silvery varnish. The outer frame is made from a stronger 14mm birch multiplex board, yielding a very solid construction. I also bought some thin, white PVC board intended as the material for the front cover, but I still have to figure out how to cut that nicely.

Lacking the ambition to create my own LED driver board I settled for the “Rainbowduino”, an Arduino compatible board developed and sold by Seeed Studio. In addition to that, I wanted the matrix to be controlled and programmed over the air. One of the cheapest, easiest, and most versatile ways to accomplish this was to modify an OpenWRT based router for this purpose.

So, here is the current BOM:

	Total 	118
	Amount	Material	Source	Costs [€]
	4	4mm plywood boards for matrix and back-plane	Hardware store	 5
	1	Can of silver spray paint	Hardware store	 10
	4	12mm birch wood multiplex boards, ready cut	Hardware store	 8
		M3 nuts and screws	Hardware store	 4
	8	Wood screws 4x65mm	Hardware store	 3
	1	PVC board (front cover)	Hardware store	17
	1	Rainbowduino	Seeed Studio	 15
	 1	Router TP-Link TL-MR3220	Mail order	 23
	 100	RGB LEDs (diffuse!), common anode (data sheet)	eBay	 25
	 65	4-pin female header connectors	IT-WNS	 5
	 4m	Ribbon cable	IT-WNS	 3
	1	74LS04		
	1	20kΩ (I used 2x10kΩ)		
	1	39kΩ		
		Perfboard, header connectors, solder, hot glue, and various other materials I had lying around.		

The construction of the LED back-plane proved to be the most tedious job. I had expected so, but I still underestimated this part. A real pain. I used 4-pin female header connectors as sockets for the LEDs, just in case I would need to replace some or all of them at some later point. Speaking of the LEDs: I ordered some really cheap ones directly from China at first. Those had a clear lens and there was no way to get the three colors to mix at all. I ended up ordering 100 more of the diffuse kind.

	
				
			
		
			

		
Using a perfboard and a couple of header connectors I whipped up a simple “shield” to terminate the ribbon cables and to connect them to the Rainbowduino. Also, there was enough space left on the board to hold the components used to convert the voltage levels of the serial connection between router and Rainbowduino. I already described this method in my last post. Strangely, this did not work without problems as it did in my test setup: Using my scope to measure the output, I could see clearly that the signal level was converted from 5V down to 3.3V by the voltage divider. When I connected the 3.3V output to the input line of the router though, the signal level dropped again, down to 1.6V. Too low for the router to read the signal. Lacking a good explanation, I decided to adjust the voltage divider accordingly – which solved the problem for me. (You can see the shortened resistor on one of the pictures.) If you know the reason for the additional voltage drop I’d really appreciate to hear it in the comments…

Firmware

This was the truly easy part! There is an awesome alternative firmware for the Rainbowduino available on Google Code called RainbowDashboard, featuring among other things a UART mode, additional commands, double-buffered graphics and a nice and clean code base. In other words: exactly what was needed for this project.

So far, I needed to make no more than two changes to the code. The first was to reverse the order of the LED columns. I seemed to somehow have wired the columns backwards. I could have re-wired the ribbon cable on the connector shield. But it was far easier to just reverse the order of the columns in the firmware.

The other addition I made was to solve a timing problem. The Rainbowduino takes no more than a second to “boot” after it is powered on. The RainbowDashboard will then readily read and accept commands from the serial interface. The router on the other hand needs more than 30 seconds to boot before I can configure it’s serial interface. It seems to generate a lot of line noise during that time which the Rainbowduino then tries to parse and execute. This resulted in random commands being executed and some of the noise being visualized on the LED display.

To prevent this, I modified the firmware to boot into standby mode first. It will then listen for a predefined character sequence before entering the regular command mode.

I used git svn clone to fork the firmware sources and pushed the code, including my changes, to a github repository. This should be well covered by the MIT License that the original code was published under and I hope the author does not mind.

Software

The next step will be to write the software for the OpenWRT router to actually control the display. I will cover this in part two, so stay tuned. It might take a while though, since I’m currently lacking the time to work on this project.

		
				
						
			
				
			
		

							

			
				
						
			
				
			
		

							

			
				
						
			
				
			
		

							

			
				
						
			
				
			
		

							

			
				
						
			
				
			
		

							

			
				
						
			
				
			
		

							

			
				
						
			
				
			
		

							

			
				
						
			
				
			
		

							

			
				
						
			
				
			
		

							

			
				
						
			
				
			
		

							

			
				
						
			
				
			
		

							

			
				
						
			
				
			
		

							

			
				
						
			
				
			
		

							

			
	
	

		
		[Show as slideshow]
		
	

	
		
		
	

	share
	share
	share
	email

			

	
		This entry was posted in Making and Tinkering and tagged Arduino, OpenWRT, TL-MR3220 by cg. Bookmark the permalink.
		
			

						
	
	
			
			One thought on “Wifi Enabled RGB Matrix Wall Light, Part 1”		

		
			
		Pingback: OpenWRT and Scripting Languages on the TL-MR3220 (Part 1) | hackup.net

				

		
		
	
		
		Leave a Reply
Your email address will not be published. Required fields are marked *
Comment *
Name *

Email *

Website

 Save my name, email, and website in this browser for the next time I comment.

Δ

	

	This site uses Akismet to reduce spam. Learn how your comment data is processed.

				
			

		

	

	

			

			
								Datenschutzerklärung – Privacy Policy				
					Proudly powered by WordPress				
			

	

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish.Accept Read More
Privacy & Cookies Policy

	
		
			
			Close
		
		
			
	
		
			
				Privacy Overview
				
					This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.

				

							

		

		
												
						
							
								Necessary							
															
									
									Necessary
								

								Always Enabled
													

						
							
								
									Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.								

							

						

					

																	
						
							
								Non-necessary							
															
									
									Non-necessary
								

													

						
							
								
									Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.								

							

						

					

										

	

		

		
			
				
					
						
						
															SAVE & ACCEPT
													

						
					

				

			

		

	

